metabelian, supersoluble, monomial
Aliases: C34⋊10C6, C34⋊11S3, C3⋊(He3⋊4S3), He3⋊4(C3⋊S3), C33⋊8(C3⋊S3), (C3×He3)⋊22S3, C33⋊15(C3×S3), C34⋊C2⋊3C3, (C32×He3)⋊6C2, C32⋊6(C32⋊C6), C32⋊1(C33⋊C2), C32⋊3(C3×C3⋊S3), C3.2(C3×C33⋊C2), SmallGroup(486,242)
Series: Derived ►Chief ►Lower central ►Upper central
C34 — C34⋊10C6 |
Generators and relations for C34⋊10C6
G = < a,b,c,d,e,f | a3=b3=c3=d3=e3=f2=1, ab=ba, ac=ca, ad=da, eae-1=ad-1, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, cd=dc, ce=ec, fcf=c-1, de=ed, fdf=d-1, fef=e-1 >
Subgroups: 4004 in 456 conjugacy classes, 80 normal (9 characteristic)
C1, C2, C3, C3, C3, S3, C6, C32, C32, C32, C3×S3, C3⋊S3, He3, He3, C33, C33, C33, C32⋊C6, C3×C3⋊S3, C33⋊C2, C3×He3, C3×He3, C34, C34, He3⋊4S3, C3×C33⋊C2, C34⋊C2, C32×He3, C34⋊10C6
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, C32⋊C6, C3×C3⋊S3, C33⋊C2, He3⋊4S3, C3×C33⋊C2, C34⋊10C6
(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)(55 56 57)(58 59 60)(61 62 63)(64 65 66)(67 68 69)(70 71 72)(73 74 75)(76 77 78)(79 80 81)
(1 19 10)(2 20 11)(3 21 12)(4 22 13)(5 23 14)(6 24 15)(7 25 16)(8 26 17)(9 27 18)(28 46 37)(29 47 38)(30 48 39)(31 49 40)(32 50 41)(33 51 42)(34 52 43)(35 53 44)(36 54 45)(55 73 64)(56 74 65)(57 75 66)(58 76 67)(59 77 68)(60 78 69)(61 79 70)(62 80 71)(63 81 72)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)
(1 3 2)(4 6 5)(7 9 8)(10 12 11)(13 15 14)(16 18 17)(19 21 20)(22 24 23)(25 27 26)(28 30 29)(31 33 32)(34 36 35)(37 39 38)(40 42 41)(43 45 44)(46 48 47)(49 51 50)(52 54 53)(55 56 57)(58 59 60)(61 62 63)(64 65 66)(67 68 69)(70 71 72)(73 74 75)(76 77 78)(79 80 81)
(1 28 56)(2 29 55)(3 30 57)(4 31 59)(5 32 58)(6 33 60)(7 34 62)(8 35 61)(9 36 63)(10 37 65)(11 38 64)(12 39 66)(13 40 68)(14 41 67)(15 42 69)(16 43 71)(17 44 70)(18 45 72)(19 46 74)(20 47 73)(21 48 75)(22 49 77)(23 50 76)(24 51 78)(25 52 80)(26 53 79)(27 54 81)
(2 3)(4 7)(5 9)(6 8)(10 19)(11 21)(12 20)(13 25)(14 27)(15 26)(16 22)(17 24)(18 23)(28 56)(29 57)(30 55)(31 62)(32 63)(33 61)(34 59)(35 60)(36 58)(37 74)(38 75)(39 73)(40 80)(41 81)(42 79)(43 77)(44 78)(45 76)(46 65)(47 66)(48 64)(49 71)(50 72)(51 70)(52 68)(53 69)(54 67)
G:=sub<Sym(81)| (28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45)(55,73,64)(56,74,65)(57,75,66)(58,76,67)(59,77,68)(60,78,69)(61,79,70)(62,80,71)(63,81,72), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (1,3,2)(4,6,5)(7,9,8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)(25,27,26)(28,30,29)(31,33,32)(34,36,35)(37,39,38)(40,42,41)(43,45,44)(46,48,47)(49,51,50)(52,54,53)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81), (1,28,56)(2,29,55)(3,30,57)(4,31,59)(5,32,58)(6,33,60)(7,34,62)(8,35,61)(9,36,63)(10,37,65)(11,38,64)(12,39,66)(13,40,68)(14,41,67)(15,42,69)(16,43,71)(17,44,70)(18,45,72)(19,46,74)(20,47,73)(21,48,75)(22,49,77)(23,50,76)(24,51,78)(25,52,80)(26,53,79)(27,54,81), (2,3)(4,7)(5,9)(6,8)(10,19)(11,21)(12,20)(13,25)(14,27)(15,26)(16,22)(17,24)(18,23)(28,56)(29,57)(30,55)(31,62)(32,63)(33,61)(34,59)(35,60)(36,58)(37,74)(38,75)(39,73)(40,80)(41,81)(42,79)(43,77)(44,78)(45,76)(46,65)(47,66)(48,64)(49,71)(50,72)(51,70)(52,68)(53,69)(54,67)>;
G:=Group( (28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45)(55,73,64)(56,74,65)(57,75,66)(58,76,67)(59,77,68)(60,78,69)(61,79,70)(62,80,71)(63,81,72), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (1,3,2)(4,6,5)(7,9,8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)(25,27,26)(28,30,29)(31,33,32)(34,36,35)(37,39,38)(40,42,41)(43,45,44)(46,48,47)(49,51,50)(52,54,53)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81), (1,28,56)(2,29,55)(3,30,57)(4,31,59)(5,32,58)(6,33,60)(7,34,62)(8,35,61)(9,36,63)(10,37,65)(11,38,64)(12,39,66)(13,40,68)(14,41,67)(15,42,69)(16,43,71)(17,44,70)(18,45,72)(19,46,74)(20,47,73)(21,48,75)(22,49,77)(23,50,76)(24,51,78)(25,52,80)(26,53,79)(27,54,81), (2,3)(4,7)(5,9)(6,8)(10,19)(11,21)(12,20)(13,25)(14,27)(15,26)(16,22)(17,24)(18,23)(28,56)(29,57)(30,55)(31,62)(32,63)(33,61)(34,59)(35,60)(36,58)(37,74)(38,75)(39,73)(40,80)(41,81)(42,79)(43,77)(44,78)(45,76)(46,65)(47,66)(48,64)(49,71)(50,72)(51,70)(52,68)(53,69)(54,67) );
G=PermutationGroup([[(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54),(55,56,57),(58,59,60),(61,62,63),(64,65,66),(67,68,69),(70,71,72),(73,74,75),(76,77,78),(79,80,81)], [(1,19,10),(2,20,11),(3,21,12),(4,22,13),(5,23,14),(6,24,15),(7,25,16),(8,26,17),(9,27,18),(28,46,37),(29,47,38),(30,48,39),(31,49,40),(32,50,41),(33,51,42),(34,52,43),(35,53,44),(36,54,45),(55,73,64),(56,74,65),(57,75,66),(58,76,67),(59,77,68),(60,78,69),(61,79,70),(62,80,71),(63,81,72)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78)], [(1,3,2),(4,6,5),(7,9,8),(10,12,11),(13,15,14),(16,18,17),(19,21,20),(22,24,23),(25,27,26),(28,30,29),(31,33,32),(34,36,35),(37,39,38),(40,42,41),(43,45,44),(46,48,47),(49,51,50),(52,54,53),(55,56,57),(58,59,60),(61,62,63),(64,65,66),(67,68,69),(70,71,72),(73,74,75),(76,77,78),(79,80,81)], [(1,28,56),(2,29,55),(3,30,57),(4,31,59),(5,32,58),(6,33,60),(7,34,62),(8,35,61),(9,36,63),(10,37,65),(11,38,64),(12,39,66),(13,40,68),(14,41,67),(15,42,69),(16,43,71),(17,44,70),(18,45,72),(19,46,74),(20,47,73),(21,48,75),(22,49,77),(23,50,76),(24,51,78),(25,52,80),(26,53,79),(27,54,81)], [(2,3),(4,7),(5,9),(6,8),(10,19),(11,21),(12,20),(13,25),(14,27),(15,26),(16,22),(17,24),(18,23),(28,56),(29,57),(30,55),(31,62),(32,63),(33,61),(34,59),(35,60),(36,58),(37,74),(38,75),(39,73),(40,80),(41,81),(42,79),(43,77),(44,78),(45,76),(46,65),(47,66),(48,64),(49,71),(50,72),(51,70),(52,68),(53,69),(54,67)]])
54 conjugacy classes
class | 1 | 2 | 3A | ··· | 3M | 3N | 3O | 3P | ··· | 3AX | 6A | 6B |
order | 1 | 2 | 3 | ··· | 3 | 3 | 3 | 3 | ··· | 3 | 6 | 6 |
size | 1 | 81 | 2 | ··· | 2 | 3 | 3 | 6 | ··· | 6 | 81 | 81 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 6 |
type | + | + | + | + | + | |||
image | C1 | C2 | C3 | C6 | S3 | S3 | C3×S3 | C32⋊C6 |
kernel | C34⋊10C6 | C32×He3 | C34⋊C2 | C34 | C3×He3 | C34 | C33 | C32 |
# reps | 1 | 1 | 2 | 2 | 12 | 1 | 26 | 9 |
Matrix representation of C34⋊10C6 ►in GL10(𝔽7)
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 4 | 6 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 6 | 1 | 6 | 6 | 6 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 2 | 0 | 1 | 6 | 6 |
0 | 0 | 0 | 0 | 2 | 1 | 1 | 6 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 5 | 0 | 6 | 0 | 1 |
0 | 0 | 0 | 0 | 5 | 6 | 6 | 1 | 6 | 6 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 4 | 6 | 6 | 6 | 1 |
0 | 0 | 0 | 0 | 5 | 3 | 0 | 0 | 5 | 6 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 6 | 1 | 1 | 6 | 1 |
0 | 0 | 0 | 0 | 5 | 3 | 0 | 6 | 5 | 0 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 6 | 1 | 1 | 6 | 5 |
0 | 0 | 0 | 0 | 5 | 3 | 0 | 0 | 5 | 6 |
0 | 0 | 0 | 0 | 2 | 5 | 0 | 6 | 1 | 1 |
0 | 0 | 0 | 0 | 5 | 5 | 0 | 1 | 5 | 5 |
G:=sub<GL(10,GF(7))| [2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,5,0,0,0,0,0,0,1,0,0,4,6,0,0,0,0,0,0,0,1,6,1,0,0,0,0,0,0,6,6,0,6,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,1,6],[1,4,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,5,4,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,2,0,0,0,0,6,6,0,0,2,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,6,6,1,6,0,0,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,6,0],[1,4,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,6,6,0,0,3,5,0,0,0,0,1,0,0,0,5,6,0,0,0,0,0,0,6,6,0,6,0,0,0,0,0,0,1,0,6,1,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,1,6],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,6,5,0,0,0,0,0,0,0,0,0,0,5,5,1,0,0,5,0,0,0,0,4,3,0,1,6,3,0,0,0,0,6,0,0,0,1,0,0,0,0,0,6,0,0,0,1,6,0,0,0,0,6,5,0,0,6,5,0,0,0,0,1,6,0,0,1,0],[2,4,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,6,5,0,0,0,0,0,0,0,0,0,0,6,0,0,5,2,5,0,0,0,0,1,1,6,3,5,5,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,6,1,0,0,0,0,0,0,6,5,1,5,0,0,0,0,0,0,5,6,1,5] >;
C34⋊10C6 in GAP, Magma, Sage, TeX
C_3^4\rtimes_{10}C_6
% in TeX
G:=Group("C3^4:10C6");
// GroupNames label
G:=SmallGroup(486,242);
// by ID
G=gap.SmallGroup(486,242);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,218,1520,867,3244,11669]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*d^-1,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,c*d=d*c,c*e=e*c,f*c*f=c^-1,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations