Copied to
clipboard

G = C3410C6order 486 = 2·35

10th semidirect product of C34 and C6 acting faithfully

metabelian, supersoluble, monomial

Aliases: C3410C6, C3411S3, C3⋊(He34S3), He34(C3⋊S3), C338(C3⋊S3), (C3×He3)⋊22S3, C3315(C3×S3), C34⋊C23C3, (C32×He3)⋊6C2, C326(C32⋊C6), C321(C33⋊C2), C323(C3×C3⋊S3), C3.2(C3×C33⋊C2), SmallGroup(486,242)

Series: Derived Chief Lower central Upper central

C1C34 — C3410C6
C1C3C32C33C34C32×He3 — C3410C6
C34 — C3410C6
C1

Generators and relations for C3410C6
 G = < a,b,c,d,e,f | a3=b3=c3=d3=e3=f2=1, ab=ba, ac=ca, ad=da, eae-1=ad-1, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, cd=dc, ce=ec, fcf=c-1, de=ed, fdf=d-1, fef=e-1 >

Subgroups: 4004 in 456 conjugacy classes, 80 normal (9 characteristic)
C1, C2, C3, C3, C3, S3, C6, C32, C32, C32, C3×S3, C3⋊S3, He3, He3, C33, C33, C33, C32⋊C6, C3×C3⋊S3, C33⋊C2, C3×He3, C3×He3, C34, C34, He34S3, C3×C33⋊C2, C34⋊C2, C32×He3, C3410C6
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, C32⋊C6, C3×C3⋊S3, C33⋊C2, He34S3, C3×C33⋊C2, C3410C6

Smallest permutation representation of C3410C6
On 81 points
Generators in S81
(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)(55 56 57)(58 59 60)(61 62 63)(64 65 66)(67 68 69)(70 71 72)(73 74 75)(76 77 78)(79 80 81)
(1 19 10)(2 20 11)(3 21 12)(4 22 13)(5 23 14)(6 24 15)(7 25 16)(8 26 17)(9 27 18)(28 46 37)(29 47 38)(30 48 39)(31 49 40)(32 50 41)(33 51 42)(34 52 43)(35 53 44)(36 54 45)(55 73 64)(56 74 65)(57 75 66)(58 76 67)(59 77 68)(60 78 69)(61 79 70)(62 80 71)(63 81 72)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)
(1 3 2)(4 6 5)(7 9 8)(10 12 11)(13 15 14)(16 18 17)(19 21 20)(22 24 23)(25 27 26)(28 30 29)(31 33 32)(34 36 35)(37 39 38)(40 42 41)(43 45 44)(46 48 47)(49 51 50)(52 54 53)(55 56 57)(58 59 60)(61 62 63)(64 65 66)(67 68 69)(70 71 72)(73 74 75)(76 77 78)(79 80 81)
(1 28 56)(2 29 55)(3 30 57)(4 31 59)(5 32 58)(6 33 60)(7 34 62)(8 35 61)(9 36 63)(10 37 65)(11 38 64)(12 39 66)(13 40 68)(14 41 67)(15 42 69)(16 43 71)(17 44 70)(18 45 72)(19 46 74)(20 47 73)(21 48 75)(22 49 77)(23 50 76)(24 51 78)(25 52 80)(26 53 79)(27 54 81)
(2 3)(4 7)(5 9)(6 8)(10 19)(11 21)(12 20)(13 25)(14 27)(15 26)(16 22)(17 24)(18 23)(28 56)(29 57)(30 55)(31 62)(32 63)(33 61)(34 59)(35 60)(36 58)(37 74)(38 75)(39 73)(40 80)(41 81)(42 79)(43 77)(44 78)(45 76)(46 65)(47 66)(48 64)(49 71)(50 72)(51 70)(52 68)(53 69)(54 67)

G:=sub<Sym(81)| (28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45)(55,73,64)(56,74,65)(57,75,66)(58,76,67)(59,77,68)(60,78,69)(61,79,70)(62,80,71)(63,81,72), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (1,3,2)(4,6,5)(7,9,8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)(25,27,26)(28,30,29)(31,33,32)(34,36,35)(37,39,38)(40,42,41)(43,45,44)(46,48,47)(49,51,50)(52,54,53)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81), (1,28,56)(2,29,55)(3,30,57)(4,31,59)(5,32,58)(6,33,60)(7,34,62)(8,35,61)(9,36,63)(10,37,65)(11,38,64)(12,39,66)(13,40,68)(14,41,67)(15,42,69)(16,43,71)(17,44,70)(18,45,72)(19,46,74)(20,47,73)(21,48,75)(22,49,77)(23,50,76)(24,51,78)(25,52,80)(26,53,79)(27,54,81), (2,3)(4,7)(5,9)(6,8)(10,19)(11,21)(12,20)(13,25)(14,27)(15,26)(16,22)(17,24)(18,23)(28,56)(29,57)(30,55)(31,62)(32,63)(33,61)(34,59)(35,60)(36,58)(37,74)(38,75)(39,73)(40,80)(41,81)(42,79)(43,77)(44,78)(45,76)(46,65)(47,66)(48,64)(49,71)(50,72)(51,70)(52,68)(53,69)(54,67)>;

G:=Group( (28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81), (1,19,10)(2,20,11)(3,21,12)(4,22,13)(5,23,14)(6,24,15)(7,25,16)(8,26,17)(9,27,18)(28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45)(55,73,64)(56,74,65)(57,75,66)(58,76,67)(59,77,68)(60,78,69)(61,79,70)(62,80,71)(63,81,72), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78), (1,3,2)(4,6,5)(7,9,8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)(25,27,26)(28,30,29)(31,33,32)(34,36,35)(37,39,38)(40,42,41)(43,45,44)(46,48,47)(49,51,50)(52,54,53)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81), (1,28,56)(2,29,55)(3,30,57)(4,31,59)(5,32,58)(6,33,60)(7,34,62)(8,35,61)(9,36,63)(10,37,65)(11,38,64)(12,39,66)(13,40,68)(14,41,67)(15,42,69)(16,43,71)(17,44,70)(18,45,72)(19,46,74)(20,47,73)(21,48,75)(22,49,77)(23,50,76)(24,51,78)(25,52,80)(26,53,79)(27,54,81), (2,3)(4,7)(5,9)(6,8)(10,19)(11,21)(12,20)(13,25)(14,27)(15,26)(16,22)(17,24)(18,23)(28,56)(29,57)(30,55)(31,62)(32,63)(33,61)(34,59)(35,60)(36,58)(37,74)(38,75)(39,73)(40,80)(41,81)(42,79)(43,77)(44,78)(45,76)(46,65)(47,66)(48,64)(49,71)(50,72)(51,70)(52,68)(53,69)(54,67) );

G=PermutationGroup([[(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54),(55,56,57),(58,59,60),(61,62,63),(64,65,66),(67,68,69),(70,71,72),(73,74,75),(76,77,78),(79,80,81)], [(1,19,10),(2,20,11),(3,21,12),(4,22,13),(5,23,14),(6,24,15),(7,25,16),(8,26,17),(9,27,18),(28,46,37),(29,47,38),(30,48,39),(31,49,40),(32,50,41),(33,51,42),(34,52,43),(35,53,44),(36,54,45),(55,73,64),(56,74,65),(57,75,66),(58,76,67),(59,77,68),(60,78,69),(61,79,70),(62,80,71),(63,81,72)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78)], [(1,3,2),(4,6,5),(7,9,8),(10,12,11),(13,15,14),(16,18,17),(19,21,20),(22,24,23),(25,27,26),(28,30,29),(31,33,32),(34,36,35),(37,39,38),(40,42,41),(43,45,44),(46,48,47),(49,51,50),(52,54,53),(55,56,57),(58,59,60),(61,62,63),(64,65,66),(67,68,69),(70,71,72),(73,74,75),(76,77,78),(79,80,81)], [(1,28,56),(2,29,55),(3,30,57),(4,31,59),(5,32,58),(6,33,60),(7,34,62),(8,35,61),(9,36,63),(10,37,65),(11,38,64),(12,39,66),(13,40,68),(14,41,67),(15,42,69),(16,43,71),(17,44,70),(18,45,72),(19,46,74),(20,47,73),(21,48,75),(22,49,77),(23,50,76),(24,51,78),(25,52,80),(26,53,79),(27,54,81)], [(2,3),(4,7),(5,9),(6,8),(10,19),(11,21),(12,20),(13,25),(14,27),(15,26),(16,22),(17,24),(18,23),(28,56),(29,57),(30,55),(31,62),(32,63),(33,61),(34,59),(35,60),(36,58),(37,74),(38,75),(39,73),(40,80),(41,81),(42,79),(43,77),(44,78),(45,76),(46,65),(47,66),(48,64),(49,71),(50,72),(51,70),(52,68),(53,69),(54,67)]])

54 conjugacy classes

class 1  2 3A···3M3N3O3P···3AX6A6B
order123···3333···366
size1812···2336···68181

54 irreducible representations

dim11112226
type+++++
imageC1C2C3C6S3S3C3×S3C32⋊C6
kernelC3410C6C32×He3C34⋊C2C34C3×He3C34C33C32
# reps1122121269

Matrix representation of C3410C6 in GL10(𝔽7)

2000000000
0200000000
0040000000
0004000000
0000100000
0000010000
0000000600
0000001600
0000546001
0000061666
,
1100000000
4500000000
0051000000
0041000000
0000060000
0000160000
0000000600
0000001600
0000420166
0000211610
,
1100000000
4500000000
0010000000
0001000000
0000100000
0000010000
0000001000
0000000100
0000000010
0000000001
,
1000000000
0100000000
0010000000
0001000000
0000610000
0000600000
0000006100
0000006000
0000350601
0000566166
,
1000000000
0100000000
0016000000
0035000000
0000546661
0000530056
0000100000
0000010000
0000061161
0000530650
,
2100000000
4500000000
0026000000
0035000000
0000610000
0000010000
0000061165
0000530056
0000250611
0000550155

G:=sub<GL(10,GF(7))| [2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,5,0,0,0,0,0,0,1,0,0,4,6,0,0,0,0,0,0,0,1,6,1,0,0,0,0,0,0,6,6,0,6,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,1,6],[1,4,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,5,4,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,2,0,0,0,0,6,6,0,0,2,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,6,6,1,6,0,0,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,6,0],[1,4,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,6,6,0,0,3,5,0,0,0,0,1,0,0,0,5,6,0,0,0,0,0,0,6,6,0,6,0,0,0,0,0,0,1,0,6,1,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,1,6],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,6,5,0,0,0,0,0,0,0,0,0,0,5,5,1,0,0,5,0,0,0,0,4,3,0,1,6,3,0,0,0,0,6,0,0,0,1,0,0,0,0,0,6,0,0,0,1,6,0,0,0,0,6,5,0,0,6,5,0,0,0,0,1,6,0,0,1,0],[2,4,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,6,5,0,0,0,0,0,0,0,0,0,0,6,0,0,5,2,5,0,0,0,0,1,1,6,3,5,5,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,6,1,0,0,0,0,0,0,6,5,1,5,0,0,0,0,0,0,5,6,1,5] >;

C3410C6 in GAP, Magma, Sage, TeX

C_3^4\rtimes_{10}C_6
% in TeX

G:=Group("C3^4:10C6");
// GroupNames label

G:=SmallGroup(486,242);
// by ID

G=gap.SmallGroup(486,242);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,218,1520,867,3244,11669]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*d^-1,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,c*d=d*c,c*e=e*c,f*c*f=c^-1,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽